Challenger O-Ring Data Analysi

Author(s)

Joseph H. Wujek

Year

1995

Description

This case provides an analysis of the O-ring data from the Challe argues for a launch scrub. Suitable for courses in applied statisti general engineering levels 1-4.

Body

Introduction

[Solutio](#page-2-0)ns

[Footno](#page-4-0)tes

Introduction

The events leading C thoal the engoties aster are well known. This problem analysis of O-ring data and involves arguing for a launch scrub b

The data of Table 1 have been used by David Hodges in the Fresh Universi[t](#page-5-0)y of California at Beekeledyata are from successful flights Boisjoly has indicated that these data were not a Chail alla a prior to disast \hat{e} \hat{e} \hat{e} r \cup se the data in Table 1 \hat{a} s needed.

- 1. Obtain a linear regressio explote all at the set and the material contract the material contract in the mat loss in the O-ring at the time of **Chhea bliesnage earronush**. Assume that the O-ring was at the launch pad ambient temperature, 29 °F.
	- 1. Compute the correlation coefficient, r. Compare it the criti the 5% significance level and explain the meaning.
	- 2. Comment on the meaning ϖ and ϖ , π and π relevant would this be arguing for no launch?
	- 3. Compute the 95% confidence interval bounds and show the linear plot.
	- 4.Comment on goodness of fit using the Chi-square test.
	- 5. Comment on goodness of fit using the Kolmogorov-Smirnov

	O-ring temp in E ^o rbsion depth, mills	\star
66.0	0.0	
70.0	53.0	
69.0	0.0	
68.0	0.0	
67.0	0.0	
72.0	0.0	
73.0	0.0	
70.0	0.0	
57.0	40.0	
63.0	0.0	
70.0	28.0	
78.0	0.0	
67.0	0.0	
53.0	48.0	

Table 1, Data Chamleng Post-flight Measußements

 $*$ 1 mil is 310 ch

- 2. Try fitting polynomials of $n = 2, 3, \ldots$ to the data and apply the problem l(c), (d), and (e) to the results.
- 3. Try transforming the dataset by logarithmic or power functions function to the transformed variables. Apply the measures of problem and (e) to the results and compare.
- 4. For the results found above, how useful would the data have b for a "no launch" decision? Comment on the ethical implicatio

Back to Top

Solutions

It is assumed that students have received instruction on the engi the disaster.

The purpose of these exercises is to sensitize students to the fol

- The worlop niss babilist hice the reminist and nothing is "sure."
- Though data may be inconclusive, when matters of life and pro stake, "not knowing" should be equivalent to "we have a probl
- \bullet Linear regressiononse buatogf fitting a function to data and interp results statistically.
- 1.(The plot is given below, and is suitable for creat**(Tigræne** overh significant figures are given in the equation for checking resu

material loss (95 % confidence) is in the range of 25 to 105 m variability indicates (see also below) high risk of seal failure. Though extrapolation is always suspect, the very notion of "not knowi validity how the seal would perform at 29 °F should have been sufficient reason to cancel the launch.

- 1. From Figure 1, $r = 0.56$. From a table of critical values of coefficients, at the 95 % confidence level (5% significance of freedom [22 data pairs minus two parameters in the line = 0.423 is f[ou](#page-5-0)nd. [4](#page-5-0). This means that with 5% probability, data exhibiting a correlation coefficient as great as 0.423 will not mb ay correl be interpreted as the maximum value that may take by cha the time) alone, when no correlation exists.
- 2. The correlation coefficient r is defy $\psi \in \mathbb{S}$ \forall where s

The numerator is the sample covariance, the denominator t the sample variances of the two variables: X, Y.

Thus the r-value is a measure of association of the two va (absolute value) $r < 1$, with $r = +/- 1$ indicating perfect cor 0 indicating perfect non-correl²atison. mTehas and reach the variability of α due to ausalitand 1^2 is a measure of variability due to rando See also the comments just after the problem statement, a

- 3. See Figure 1. Explain the meaning of the confidence interv interpretation is: "If we performed a very large number of outcomes would lie in the indicated 95%`bounded range."
- 4. For both the Chi-square test and the K-S test of problem (hypothesis $\mathfrak j$ sTh He data are uncorrelated.

We accept the hypoth $\frac{2}{9}$ s s $\frac{2}{1}$ f: $\frac{X}{4}$, v

where 1 ` \pm = C is the confidence l **s**ingen lif(i \pm and \pm and v is the degrees of free bleome, $v = N$ '1 ' m, where N is the number observations of the variables (22 in this case), and m is the parameters in the equation being tested ($m = 2$ for linear ϵ The term on the left side of the in**equality Constant** is the are statistic, computed the data. The right side of the inequali the Chi-square variable corresponding to probability C, i.e. integral of the density function to the variate. These are t

For the problem a_0 $\hat{\mathcal{K}}$ $\hat{\mathcal{K}}$ $\hat{\mathcal{K}}$ and $d_{5,15}$ 30.1 and $\hat{\mathcal{K}}$ 422.

Therefore, the hypothesis is accepted that the data are no correlated.

5.For the Kolmogorov-Smirnov test we use the samheehypothe data are uncorrelated.

We reject the hypothesis $_{f}$ i $\left\{ \gamma\right\}$? $\mathrm{Sd}\mu_{f}$ (pv \emptyset y

The subscripts on y refer to "fused" and "data" values, res for a datapair X whe value of the fitted function Tantex maximum value ("supremum") is the compared to the K `S statistic for the form of the form s significancelevel and degrees of freedom<u>.</u>6as in problem (c

We find Sup $\frac{1}{2}$ $\frac{1}{2}$ = 45, and $\frac{1}{2}$ = 0.301, so we cannot reject hypothesis that the data are not linearly correlated.

- 2. Problem 2 is intended for exercises in curve-fitting. Because ended nature, solutions are not given. A pitfall of using a loga transformation is attempting to compute the logarithm of zero!
- 3. Problem 3 is intended for exercises in curve-fitting. Because ended nature, solutions are not given. A pitfall of using a loga transformation is attempting to compute the logarithm of zero!
- 4. The erratic data would have been sufficient to indicate "we ha because of the risk to human lives. The astronauts were not in history of the O-ring defects, thus informed consent was not p

Back to Top

Footnotes

- . [1.](#page-0-0) Lighthall, F. "Launching the Space Shuttle Challenger: Disci Deficiencies in the Analysis of Englie Ee Tinga D saat fons on Engineering Manage *M*odent38, No. 1, February 1991. pp. 63-74.
- [2.](#page-1-0) Boisjoly, R. Pers. comm. November 1993.
- [3.](#page-1-0) Lighthall, p. 70, Table I.
- . [4.](#page-3-0) Found in many texts and handbooks. See for example, Fishe F.Statistical Tables for Biological. Agricultural, and iMeerd & cal F Boyd, Ltd., Edinburgh, 1957.
- [5.](#page-4-0) Owen, Blandbook of Statistica Addibsloens`. Wesley, Reading, MA, 1962. p. 51.
- [6.](#page-4-0) Owen, p. 64.

• Figure 1, Chart- Linear Regression on O-ring Data (After Ligh

Back to Top

Notes

Author: Dr. Joseph H. Wujek, P.E., College of Engineering Univer Berkeley.

These problems were originally developed as part of an NSF-fund numerical problems that raise ethical issues for use in engineerir assignments. The problems presented here have been edited slight

Rights

Use of Materials on the OEC

Resource Type

Case Study / Scenario

Parent Collection

Numerical & Design Problems With Ethical Content

Topics

Catastrophes, Hazards, Disasters Employer/Employee Relationships Lab and Workplace Safety Safety Workplace Ethics

Discipline(s)

Aerospace Engineering Computer, Math, and Physical Sciences Engineering Material Science and Engineering Mechanical Engineering Statistics and Probability Authoring Institution