Efficacy of Macroethics Education in Engineering

Author(s)
Angela Bielefeldt

Year
2019

Description

This page summarizes research into the state of incorporating macroethics into engineering and computing education for undergraduate and graduate students. It includes summaries of 35 educational case studies.

Body

The OEC Project Pages are intended to cultivate a community of practice and allow ethics researchers, educators, and practitioners to more effectively disseminate their work. This Project Page provides a detailed overview and relevant resources for an on-going science or engineering ethics project. Once you've explored this project, visit the "Projects" section under "Resources" to see more ethics projects.
The goals of this collaborative project are to evaluate the various ways in which macroethics is taught in engineering and computing to undergraduate and graduate students (both in and out of the classroom), and to determine the most effective methods that can then be adopted by others.

In order for STEM disciplines to reach their full potential to benefit society, students must be prepared to engage in broad considerations of the ethical issues that face the profession. Established codes of conduct describe standards for professional behavior, but these largely relate to individual actions associated with individual projects, so-called 'micro'-ethical considerations. But engineering and computing must also consider 'macro'-ethical challenges, which consider the societal and environmental implications of technology as the collective responsibility of the profession. Macroethics includes issues such as sustainability, poverty and underdevelopment, security and peace, social justice, bioethics, nanoscience, and social responsibility. The extent to which engineering and computing students graduate with an understanding of macroethical issues is unclear and in need of organization.

This research started with a large survey of engineering and computing faculty across the U.S. This was followed by interviews of selected faculty who are effectively using a diversity of methods to teach a range of macroethical issues. This resulted in a set of 35 educational case studies that can serve as models for others. More detailed outcomes assessments were conducted for 11 of those teaching settings, including student surveys, rubric assessment of student work, and in some cases observations, student focus groups, and alumni surveys. Best practices were identified and are being propagated via faculty training workshops and online resources.

Leadership

Angela R. Bielefeldt
Department of Civil, Environmental, and Architectural Engineering
Engineering Plus
University of Colorado Boulder

Christopher Swan
School of Engineering
Tufts University

Nathan Canney
CYS Structural Engineers

Funding

National Science Foundation (NSF CCE-STEM 1540348, 1755390)

Recipient Organizations

- University of Colorado Boulder
- Tufts University
- Seattle University

Start and End Date

September 1, 2015 - August 31, 2020

Contact Information

Angela Bielefeldt (Angela.Bielefeldt@colorado.edu)

Relevant Links

- Project Homepage
- Teaching Examples Summary Spreadsheet
- Two-Page Summaries of Teaching Examples
Publications, Presentations, and Other Products

Manscripts

Peer Reviewed Conference Papers

Workshops

Posters

Zhao, D., A. Bielefeldt, M. Polmear, D. Knight, C. Swan, N. Canney. 2019. Rubric Assessment of Ethics and Societal Impacts Content of Student Assignments. American Society for Engineering Education (ASEE) Rocky Mountain Section

Rights

Use of Materials on the OEC

Resource Type

Projects

Parent Collection

STEM Ethics Projects (2017-Present)

Topics

Goals of Ethics Education
Evaluation and Assessment
Pedagogical Approaches

Discipline(s)

Teaching Ethics in STEM
Engineering
Authoring Institution
University of Colorado Boulder