DIY Biology and the Case of the Glowing Plants


In 2013, the Glowing Plant Project raised money to fund amateur biologists attempting to insert a firefly gene into a small flowering plant called Arabidopsis thaliana. This historical case explores ethical concerns with synthetic biology and the DIY Biology movement.


In 2013, the Glowing Plant Project raised money to fund amateur biologists attempting to insert a firefly gene into a small flowering plant called Arabidopsis thaliana. The amateur scientists aimed to create a plant that would emit green light once its modified genome prompted it to produce bioluminescent enzymes, such as Luciferase. The project advertised on the popular crowd-sourcing website, Kickstarter, and raised close to $500,000 ( The initiators of the campaign promised that, if successful, supporters would receive the seeds of the genetically modified plants to grow wherever they wanted. The distribution of these seeds would not be subject to any institutional regulation, required for other bio-engineering companies, like Monsanto, that determines whether new GMOs are safe for humans and whether they pose any environmental risks (Grushkin 2013).

The initiators of the project believed that the Glowing Plant project would popularize new technologies in synthetic biology, such as gene-writing software and the creation of synthetic DNA, and perhaps also inspire and educate the broader public about these new biotechnologies. However, many scientists objected to the project's goals and Kickstarter eventually revised its guidelines to prohibit the distribution of GMOs as a reward for investment. Several critics of the project deemed it controversial.

On the one hand, some scientists argued that the project's aims were frivolous and did not contribute to the development of any beneficial applications. For that reason, they believed the risk of releasing GM plants to the general public, and thus into the wild, with potentially detrimental consequences, was too great. Others simply criticized the project for being biochemically unfeasible, claiming that the small plants would not be able to produce enough energy to glow for any extended period of time. The objections to the Glowing Plant Project led to other fund-raising campaigns, like Kickstarter, intending to stop all projects involved with GMOs.

On the other hand, supporters of the project emphasized the potential of DIY biology projects, such as the Glowing Plant Project, to democratize science and encourage creativity and innovation to help solve real-world problems. They also downplayed the risks involved in both the procedure of genetically modifying these plants and their potential release into the environment. The researchers behind the Glowing Plant Project explained that they would insert the genes using a ballistics-powered device, called a gene gun, rather than using a bacterial transfection vehicle, such as Agrobacterium (Callaway 2013). Because of the gene-gun method, the project lay beyond the jurisdiction of the US Department of Agriculture (USDA). Second, they claimed that both the plant species and the gene circuitry that the scientists proposed to use in the project are well-studied and well-understood systems and do not pose safety risks to humans or the environment.

Discussion Questions:

  • What are the ethical, social and legal issues in the case of the glowing plants in DIY biology, and in DIY biology more generally?
  • Should DIY biology be subject to government oversight? Or should it be self-regulated by members of the DIY biology community? What are the potential trade-offs in governmental oversight compared to a system of self-regulation?
  • What kinds of institutions, if any, should regulate DIY biology projects?
  • Should Kickstarter have banned the distributions of GMOs as rewards for DIY biology project supporters?


Callaway, Ewen. "Glowing plants spark debate." Nature 498, no. 7452 (2013): 15-16. June 4, 2013. Accessed December 10, 2015.

Evans, Nicholas G., and Michael J. Selgelid. "Biosecurity and open-source biology: The promise and peril of distributed synthetic biological technologies." Science and engineering ethics (2014): 1-19. doi: 10.1007/s11948-014-9591-3

Grushkin, Daniel. "Glowing Plants: Crowd Sourced Genetic Engineering Project Ignites Controversy." Scientific American. June 11, 2013. Accessed December 10, 2015.

Kamenetz, Anya. "Supreme Court Decision Opens the Doors to a Boom in Synthetic Biology." June 12, 2013. Accessed December 10, 2015.

Kuiken, Todd. "DIYbio: Low Risk, High Potential." The Scientist (2013): 26-27. March 1, 2013. Accessed December 10, 2015.

Landrain, Thomas, Morgan Meyer, Ariel Martin Perez, and Remi Sussan. "Do-it-yourself biology: challenges and promises for an open science and technology movement." Systems and synthetic biology 7, no. 3 (2013): 115-126. doi: 10.​1007/​s11693-013-9116-4

Ledford, Heidi. "Garage biotech: Life hackers." Nature News 467, no. 7316 (2010): 650-652. doi: 10.1038/467650a

McKenna, Phil. "Rise of the garage genome hackers. A do-it-yourself movement hopes to open up synthetic biology to anyone with a passion for tweaking DNA." New Scientist (2009): 20-21.

Meyer, Morgan. "Build your own lab: Do-it-yourself biology and the rise of citizen biotech-economies." Journal of Peer Production 2, no. online (2012): 4-p. Accessed December 10, 2015.

Meyer, Morgan. "Hacking life? The politics and poetics of DIY biology." Meta Life. Biotechnologies, Synthetic Biology, Life and the Arts, MIT Press, Leonardo eBook Series (2014).

Seyfried, Günter, Lei Pei, and Markus Schmidt. "European do‐it‐yourself (DIY) biology: Beyond the hope, hype and horror." Bioessays 36, no. 6 (2014): 548-551. doi: 10.1002/bies.201300149

Wolinsky, Howard. "Kitchen biology." EMBO reports 10, no. 7 (2009): 683-685. doi: 10.1038/embor.2009.145


Site for the Glowing Plant Project: (Accessed December 10, 2015)

A Blog for the "Do-It-Yourself Biologist": (Accessed December 10, 2015)

"Glowing Plant seeds expected to ship in December: Biohackers' genetically engineered glow-in-the-dark plant attracts fans and critics." CBC New: Technology & Science. October 9, 2014. Accessed December 10, 2015.


The author wishes to acknowledge the contributions of Karin Ellison, OEC - Life and Environmental Sciences Editor, and Joseph Herkert, OEC Engineering co-Editor. They provided valuable input in selecting topics and crafting the resources.